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About the speaker [EE!%E.;’“ .

» Matthew Lightwood BERLIN 2018
= Director Quantitative Finance

= Expert in quantitative and economic modelling

= GEMS™ Economic Scenario Generators

= Conning

<0CONNING' = GEMS™ Economic Scenario Generator (ESG) provider
= Asset allocation and fund management specialist
= Risk manager
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About the speaker [EE!%E.;’“

] BERLIN 2018
= Anna Knezevic

= Managing Director
= Works in quantitative aspects of profit/capital

optimization based on incomplete data; utilizing
data analytics to drive business insights.

= M&A Solutions Ltd

= Provider of customized quantitative solutions for:
— Capital optimization,
— Risk management, and
— Strategy

SOLUTIONS
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Forecasting Yield Curves Motivation m%g!}"'l

BERLIN 2018

= Many places where a central assumption of the future value of
interest rates is required

« Investment decision making

« Regulatory internal models (e.g. Solvency II)

» Policy decision making (e.g. Central Banks)

« Assesment of risk in pensions funds (e.g. With profits funds)

= A robust, automatable, repeatable, explainable, justifiable
approach is required
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Dynamic Nelson Siegel Model ICA CIA i

BERLIN 2018

= Dynamic Nelson Siegel Model (DNS) is a popular framework
for analysing and forecasting interest rates

Backed by a large body of research (e.g. Diebold and Li
2005/2006)

Outperforms other methods on data from multiple
economies

Parsimonious, intuitive, relatively simple to estimate
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Dynamic Nelson Siegel (Basic Idea) m&';e}'l

1 1 BERLIN 2018
» Three factor model V(D)= E+ﬁ e ”) EPCAD _exp(- frjjla

= Fix A and fit B’s to historical EE

yield curves (OLS)
DNS Factor Loadings Lambda=0.5

= For example with German
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Source: Conning Inc.
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Dynamic Nelson Siegel (Basic Idea) AN P
_ BERLIN 2018
. FaCtorS B are dynamIC . DNS Factors for DE Bund Yields 2007 to 2017

= B1,t closely follows the
yield levels as expected

= “Shape” factor
movements track term
structure movements

= Build ARIMA model to
forecast future yields
curves

Factor Magnitude

Source: Conning Inc./Bloomberg
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Dynamic Nelson Siegel - Performance
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DNS
RMSE STDER

Forward Curve
RMSE STDER
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Dynamic Nelson Siegel = Forward Curve Source: Conning Inc.
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Thought process for Neural Net m%f;’“
BERLIN 2018
= We considered that DNS doesn't take into consideration
« long term shifts in the regimes;
« Interaction between three components;
« Actual underlying yield curves.

= Stipulation: Neural Net that DOES do all of the above should
improve on DNS performance, ceterus paribas.
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How and why does the wide model work? [E:!%E‘!:TI ;

BERLIN 2018

= Previous attempts to predict yield curves have noted that deep
neural nets struggle to forecast data

= Data contains multiple features that the wide model is able to
detect because of multiplicity of different ,approaches"

= Gating unit (i.e. Initial values) has been added to enable
network to identify under which scenarios some experts may
perform better
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BERLIN 2018

Input

Dense lay <

er(s)

Lambda layer for fine tuning — converts the outputs from last layer back to

yield curve
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What do the layers look like? m%gi}'l_-

BERLIN 2018

= Dense Laver = LSTM Laver
N
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What do the layers look like? m'a'éﬁ!}"'l

BERLIN 2018

Conv1D Layer = LocallyConnected1D Layer

Features maps

Input image

Source: Zhu, W.W. et al. 2014 HEP Source: Blog by Adrian Colyer, 2017
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What does the math look like? mggs“.

BERLIN 2018

eZ—p~Z

= For f1,3= o where z = {z{, Z,, Z3}

= For z=w; Y2 gating + wy, Y2,, LSTM + w3 Y.s ConvlD +w, Y3 LocallyConnected
+ w: Y2 Dense « (B as above);

= Where w;... ws are matricies of weights,
- gating is the original input;
= LSTM = h(s.y® + gy™)

« ConviD = f(b + zd,ﬂ(Wi(f?,,E“"” >)

St+d+t!

= LocallyConnected = f(bl.(’?'i) +Z§l,=1 <W(£’.i) g1 >)

it t+d+t!
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. Absolute error Absolute Error
Country % improvement DNS Neural Net

’”’A
-

United States -4.2% 4.5834 4.3923
United Kingdom -9.2% 4.4786 4.0666
Germany -21.4% 7.1098 5.5848
Australia -27.0% 6.2658 4.5742
Japan -34.8% 1.4191 0.9247
Singapore -20.1% 3.4951 2.7930
Hong Kong -2.7% 2.0795 2.0242
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Sample yield curves by country 723,
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Thank you very much for your attention! m&*—‘s!
BERLIN 2018

Contact details:
Dr. Matthew Lightwood

address: Augustinerstr. 10,
50667 Cologne,

Germany

phone:  +49 (0) 22178800405

mail: matthew.lightwood@conning.com
Www.conning.com

Contact details:
Anna Knezevic

address: 31 Robinson Rd
Hong Kong, Hong Kong
China
phone: +(852) 6461 8307
mail: anna.k@ma8asolutions.com
web: www.m8asolutions.com
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Q&A: Overfitting, scarce data and others [Eililﬁl;’“
BERLIN 2018
= Forcing model to generalise
= Early stopping times
= Rolling rather than non-overlapping
= Dropout
= Normalisation
= Data compression
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Q&A: Cross economy prediction l/f 5}'!!_.
(Country  |DNS | UsualNN__| USasinputtoNN _ PERLIN T

Australia 6.2658
Hong Kong 2.0795
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Q&A: Technology m'a'é_é}"'l
BERLIN 2018
= Matlab (Octave)
= R-Studio
= Python (Jupyter)

= Cloud (GCP)
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Q&A: Autoencoders and PCA m%g;ﬁ'l_.

BERLIN 2018
, -
= PCA works better! (Although we haven't tried causal encoders)
PCA vs Autoencoder PCA vs Autoencoder
02 1 e 00301 __ astoencoder
01 0025 { ;'ff Curve
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Q&A: Further improveNets m'a'é_é}"'l
BERLIN 2018
= Additional data sources
 Fed statements, markets, GDP...
= Residual nets (some of the errors will have correlation with

ti m e ) Hyperbolic tangent deep layer Standardised data Sigmoid deep layer
0.04 { — Componentl onent onent
Component2 0.02 002
003 1 — Component3
002
0.00 000
001
0.00 0.02 -0.02
-0.01
-0.0 -0.0
-0.02
-0.03 0.06 006
T T T T T T T T T T T T T T
0 5 10 15 0 ] 0 0 5 10 15 20 P 0 5 10 15 P 5 )

4 — 8 June 2018, www.ica2018.o0rg



