

NEURAL NETS & DNS

presents:

Comparison of 1 year forecasting of yield curves

FEBRUARY 28, 2018
M&A SOLUTIONS

Hong Kong

1

Contents
Introduction ... 2

Methodology ... 3

Data regularization .. 3

Model .. 4

Structure .. 4

Nodes .. 4

Activation functions .. 5

Optimisers ... 5

Results ... 7

Additional analysis .. 9

Future work ... 10

2

Introduction
How to set the central assumption for the mean of nominal yields is a problem with wide

ranging implications for regulatory capital calculations, risk management as well as ALM and
determining the optimal investment strategy for insurance and pension undertakings. It is well
understood and evidenced that three factors (shift, twist, curvature) are the principal drivers of yield
curve dynamics1. Building on this an interesting approach to forecasting yield curves using a dynamic
form of the Nelson Siegel ('DNS') Model is proposed by Diebold and Li2. While these techniques
often lead to significantly lower forecasting errors than other methods (e.g. forward curve or analyst
predictions) they still essentially embed dynamics similar to the historical window used for
estimation.

In this material we investigate whether the use of technologies such as neural networks and
tensor flow can improve the forecasting accuracy of the Dynamic Nelson Siegel Model.

1 Litterman, R., & Scheinkman, J. (1991). Common Factors Affecting Bond Returns. Journal of Fixed Income, 54-
61
2 Diebold, F., Li, C., & Yue, V. Z. (2008). Global yield curve dynamics and interactions: A dynamic NelsonSiegel
approach. Journal of Econometrics, 351-363.

3

Methodology
Our model is a hybrid of a wide and deep model. We mirror an approach used when

forecasting the term structure using the DNS Model and only allow the model to look at N years (in
our case the optimal amount for economies considered was 5 years - 60 monthly periods) to predict
the yield curve that lies 12 months ahead. The width (i.e. the number of experts) of the model takes
advantage of various aspects that are not captured within the ARIMA framework - long term memory
switches that can detect a regime change, correlation between the shift (Beta 1), slope (Beta 2) and
twist (Beta 3). Further, whereas ARIMA can only be assessed against the components decomposition
of the future yield curve, the neural net can be assessed against actual yield curve.

In order to minimize the effect of noise in the historical yield curve data we've opted to
mimic the compression of this data to three factors using the ARIMA framework. [Side note: We've
also performed some analysis on whether the auto-encoders could beat PCA decomposition for this
problem, and found that PCA remained the optimal solution at least in the mean time]. We've found
that this provided optimal structure for enabling comparison: it had the same inputs and the same
information compression of the process in both the neural network and DNS approaches. Removal of
the 3 component (as per PCA) constraint would likely increase performance, but this was outside of
the scope of our research.

To control for periods and economic cycles we've attempted to train on slightly different data
for all economies. Additionally, we varied the structure slightly according to economy. In some cases
a deeper network was more beneficial; in others a shallow one performed the best.

We trained the model on one set of 60 period segments, allowing for shuffling, validated it
against 20 (or so) subsequent periods, and tested it against the next 20 periods. This means that
between model training, and the actual predictive capacity for which it is being used there is around 2
years of gap. (We take Bloomberg month end interpolated data periods from say April ‘06 to February
‘14 to train the model, March ‘14 to October ‘15 to validate, and the rest of the data to June ’17 to test
the model). Although this is not reflective of reality of building these models (they may be used
without the test period), it still provides a robust justification to the validity of our approach.

Data regularization
To enable the neural network to perform to the best of its efficiency we normalise the data

prior to feeding it into the neural net (standardising by the history (60 periods) for the input).
Although there are standardization functions readily available within the Sci-kit libraries in Python,
our standardization was done manually (not recommended). The additional benefit of training directly
to the yield curve means that no de-standardisation was needed.

4

Model
The model consists of 4 experts and a “look through” layer which enables the model to use

the data directly. We will refer to experts as layers, as this is commonly accepted terminology in the
sphere. By a layer we mean specific neural net with computational architecture suited to a purpose.

Structure
Previous work in this sphere condemned the use of deep networks as inaccurate for financial

analysis3. In our work this did not prove to be absolutely true (and although we attempted to calibrate
a Deep Boltzmann Machine for predictive purposes in MATLAB, in the end it didn't perform well), as
with shorter iterations, and without re-conversion back into the yield curve it was a lot more difficult
to correctly fit a deep network. However, we've found that dropout rate in addition to extra nodes
typically improved the generalisation power of the network.

Nodes
Our network had a look through layer as per Hinton4, to enable it to assess which experts should

be granted more credence. The four expert networks are as follows:

1) LSTM 120 nodes with dropout of 50% - Long-Short Term Memory is typically cited as the
feature of recurrent neural networks most equivalent to ARIMA: the layer has the ability to
open and close "gates" to retain information. There are additional features of retention that
we didn't employ in this model (like 'Stateful' implementation - which enables to better tune
the LSTM). Our original network included three layers of these, however as we started
comparing with ARIMA they had poor performance. 5

2) Dense 6 nodes with dropout of 50% - perhaps the simplest of the layers as it multiplies each
unit of the input by the number of nodes contained in the layer and apply the activation
function and bias (none in our case). We used dropout (when half the nodes randomly

3 Kaastra, I., & Boyd, M. (1996). Designing a neural network for forecasting financial and economic time series.
Neurocomputing, 215-236.
4 http://www.cs.toronto.edu/~fritz/absps/jjnh91.pdf
5 https://keras.io/layers/recurrent/#lstm

LSTM Dense ConvD1 Connected1D

Input

Dense layer(s)

Lambda layer for fine tuning – converts the outputs from last layer back to
yield curve

5

disappear and bring the actual resulting network to 3 nodes), so as to amplify the predictive
power of the network.6

3) Convolution Layer (1D) with 9 filters - this layer filters the information that comes in to the
model - the filters applied are the same for all data - in our case we opted by a 3x3 structure to
deflect the derivative aspects of the betas.7

4) Locally connected 1D – as above in 3), however each section of the data fed to the layer. This
layer may "hear" specific noises coming in from different historical data points.8

We've then proceeded to compress the information coming out of these experts into a single
layer and feed into either another dense layer or directly to the last 3 node layer which is then taken to
be the changes to the historical means and standard deviations to the betas.

As a side note, we are sure that as more and more examples of implementation of layers
become prevalent, the easier the addition of layers becomes which is very likely to lead to direct
improvement of the model performance. Although, at first blush overfitting may be a concern,
techniques like dropout and kernel/bias constraints automatically reduce the models ability to overfit
(they essentially mean that the model cannot always rely on a node being always available).

Activation functions
Although there are multiple activation functions (image source wiki9): we have focused on

three main shapes that are simple to distinguish, and readily available within the Keras package.

1) Sigmoid (aka logistic or Soft step) – smooths out small variations
as less sensitive to small changes, this function is sensible to use
when you are trying to get to generalize to the “bigger picture” i.e.
image recognition.

2) RELU – regularized linear unit works well for economies which
have a positive trend to their yields. This was a small number.

3) Tanh – hyperbolic tangent, most sensitive to small changes. This
made the function optimal for picking up the small changes in betas
that sigmoid function "smoothed over".

Optimisers
Most of the problems have a complex space of solutions. Indeed, the more unknowns added

the more complex the optimisation of problems of weights and biases becomes. Below is an overview
of more frequently used optimisers with some of their features.

1) RMS Prop– optimiser that works exceptionally well on Recurrent Neural Nets (as per our
modelling starting point) and the technique behind the optimiser is smoothing out variations
in convergence by dividing them by average over number of immediately previous periods.10

6 https://keras.io/layers/core/#dense
7 https://keras.io/layers/convolutional/#conv1d
8 https://keras.io/layers/local/#locallyconnected1d
9 https://keras.io/optimizers/#parameters-common-to-all-keras-optimizers
10 www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

6

2) Adadelta11– adaptive learning rate method - the optimiser speeds up or slows down the
gradient descent depending on first order information emerging from computation.

3) SGD – stochastic gradient descent, has fewer specific designs than the two above, but
essentially provides ability to fit the optimisation to any problem, as the underlying approach
is supremely simple: the weights of the network are adjusted in accordance with the error rate
relative to the targets. That intuition although computationally intensive allows confidence in
convergence of solution to the problem over time.

11 https://arxiv.org/abs/1212.5701

7

Results
Based on the following model we were able to obtain the following results for these economies:

Economy
DNS sum abs

validation error
NN sum abs

validation error
Sample plot

US 4.58341216 4.39226404

UK 4.47859626 4.06658903

DE 7.10978443 5.58480586

JP 1.41906627 0.92467229

8

SG 3.49509066 2.79304426

AU
6.26584138

4.57419012

HK 0.77290543 0.66875669

9

Additional analysis
We also had a look at possibilities of using US data to infer HK curves and AU curves, since

the original data provided short history to work with.

These networks require further amendments to the structure, and hence the performance on
existing structure is cited below. As it is obvious the information does get lost between the two
countries, but we are working to investigate a) renormalisation via HK/AU rather than US as is
currently done b) adding an additional information into the model about the difference between the
economies

Economy
DNS sum abs

validation
error

NN sum abs
validation

error

NN x US sum
abs val error

Sample plot

HK 2.07945826 2.02418896 2.00145044

AU 6.26584138 5.14440047 4.68136195

10

Future work
This work can be extended to incorporate market indicators, commentary and even central

bank announcements.

Residual neural nets and regression analysis can also be a powerful enhancement, as some of
the errors are trending in their nature across the training or validation or testing periods.

Below you can see an example of such an occurrence, which chronological results of
residuals from one of our models. The errors show a consistent trend across time. Hence, corrections
could be make to further enhance the model accuracy via residual modelling.

