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Introduction 
How to set the central assumption for the mean of nominal yields is a problem with wide 

ranging implications for regulatory capital calculations, risk management as well as ALM and 
determining the optimal investment strategy for insurance and pension undertakings.  It is well 
understood and evidenced that three factors (shift, twist, curvature) are the principal drivers of yield 
curve dynamics1. Building on this an interesting approach to forecasting yield curves using a dynamic 
form of the Nelson Siegel ('DNS') Model is proposed by Diebold and Li2. While these techniques 
often lead to significantly lower forecasting errors than other methods (e.g. forward curve or analyst 
predictions) they still essentially embed dynamics similar to the historical window used for 
estimation. 
 

In this material we investigate whether the use of technologies such as neural networks and 
tensor flow can improve the forecasting accuracy of the Dynamic Nelson Siegel Model. 
 

 
 
  

                                                             
1 Litterman, R., & Scheinkman, J. (1991). Common Factors Affecting Bond Returns. Journal of Fixed Income, 54-
61 
2 Diebold, F., Li, C., & Yue, V. Z. (2008). Global yield curve dynamics and interactions: A dynamic NelsonSiegel 
approach. Journal of Econometrics, 351-363. 
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Methodology 
Our model is a hybrid of a wide and deep model.  We mirror an approach used when 

forecasting the term structure using the DNS Model and only allow the model to look at N years (in 
our case the optimal amount for economies considered was 5 years - 60 monthly periods) to predict 
the yield curve that lies 12 months ahead. The width (i.e. the number of experts) of the model takes 
advantage of various aspects that are not captured within the ARIMA framework - long term memory 
switches that can detect a regime change, correlation between the shift (Beta 1), slope (Beta 2) and 
twist (Beta 3). Further, whereas ARIMA can only be assessed against the components decomposition 
of the future yield curve, the neural net can be assessed against actual yield curve. 

In order to minimize the effect of  noise in the historical yield curve data we've opted to 
mimic the compression of this data to three factors using the ARIMA framework. [Side note: We've 
also performed some analysis on whether the auto-encoders could beat PCA decomposition for this 
problem, and found that PCA remained the optimal solution at least in the mean time]. We've found 
that this provided optimal structure for enabling comparison: it had the same inputs and the same 
information compression of the process in both the neural network and DNS approaches. Removal of 
the 3 component (as per PCA) constraint would likely increase performance, but this was outside of 
the scope of our research. 

To control for periods and economic cycles we've attempted to train on slightly different data 
for all economies.  Additionally, we varied the structure slightly according to economy. In some cases 
a deeper network was more beneficial; in others a shallow one performed the best.  

We trained the model on one set of 60 period segments, allowing for shuffling, validated it 
against 20 (or so)  subsequent periods, and tested it against the next 20 periods. This means that 
between model training, and the actual predictive capacity for which it is being used there is around 2 
years of gap. (We take Bloomberg month end interpolated data periods from say April ‘06 to February 
‘14 to train the model, March ‘14 to October ‘15 to validate, and the rest of the data to June ’17 to test 
the model). Although this is not reflective of reality of building these models (they may be used 
without the test period), it still provides a robust justification to the validity of our approach. 

 

 

 

Data regularization 
To enable the neural network to perform to the best of its efficiency we normalise the data 

prior to feeding it into the neural net (standardising by the history (60 periods) for the input).  
Although there are standardization functions readily available within the Sci-kit libraries in Python, 
our standardization was done manually (not recommended). The additional benefit of training directly 
to the yield curve means that no de-standardisation was needed. 
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Model 
The model consists of 4 experts and a “look through” layer which enables the model to use 

the data directly. We will refer to experts as layers, as this is commonly accepted terminology in the 
sphere. By a layer we mean specific neural net with computational architecture suited to a purpose. 

 

Structure 
Previous work in this sphere condemned the use of deep networks as inaccurate for financial 

analysis3. In our work this did not prove to be absolutely true (and although we attempted to calibrate 
a Deep Boltzmann Machine for predictive purposes in MATLAB, in the end it didn't perform well), as 
with shorter iterations, and without re-conversion back into the yield curve it was a lot more difficult 
to correctly fit a deep network. However, we've found that dropout rate in addition to extra nodes 
typically improved the generalisation power of the network. 

 

 

 

 

 

 

 

 

 

 

Nodes 
Our network had a look through layer as per Hinton4, to enable it to assess which experts should 

be granted more credence. The four expert networks are as follows: 

1) LSTM 120 nodes with dropout of 50% - Long-Short Term Memory is typically cited as the 
feature of recurrent neural networks most equivalent to ARIMA: the layer has the ability to 
open and close "gates" to retain information.  There are additional features of retention that 
we didn't employ in this model (like 'Stateful' implementation - which enables to better tune 
the LSTM). Our original network included three layers of these, however as we started 
comparing with ARIMA they had poor performance. 5 
 

2) Dense 6 nodes with dropout of 50% - perhaps the simplest of the layers as it multiplies each 
unit of the input by the number of nodes contained in the layer and apply the activation 
function and bias (none in our case). We used dropout (when half the nodes randomly 

                                                             
3 Kaastra, I., & Boyd, M. (1996). Designing a neural network for forecasting financial and economic time series. 
Neurocomputing, 215-236. 
4 http://www.cs.toronto.edu/~fritz/absps/jjnh91.pdf 
5 https://keras.io/layers/recurrent/#lstm 

LSTM Dense ConvD1 Connected1D 

Input 

Dense layer(s) 

Lambda layer for fine tuning – converts the outputs from last layer back to 
yield curve 
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disappear and bring the actual resulting network to 3 nodes), so as to amplify the predictive 
power of the network.6 
 

3) Convolution Layer (1D) with 9 filters - this layer filters the information that comes in to the 
model - the filters applied are the same for all data - in our case we opted by a 3x3 structure to 
deflect the derivative aspects of the betas.7 
 

4) Locally connected 1D – as above in 3), however each section of the data fed to the layer. This 
layer may "hear" specific noises coming in from different historical data points.8 

We've then proceeded to compress the information coming out of these experts into a single 
layer and feed into either another dense layer or directly to the last 3 node layer which is then taken to 
be the changes to the historical means and standard deviations to the betas. 

As a side note, we are sure that as more and more examples of implementation of layers 
become prevalent, the easier the addition of layers becomes which is very likely to lead to direct 
improvement of the model performance. Although, at first blush overfitting may be a concern, 
techniques like dropout and kernel/bias constraints automatically reduce the models ability to overfit 
(they essentially mean that the model cannot always rely on a node being always available). 

Activation functions 
Although there are multiple activation functions (image source wiki9): we have focused on 

three main shapes that are simple to distinguish, and readily available within the Keras package. 

1) Sigmoid (aka logistic or Soft step) – smooths out small variations 
as less sensitive to small changes, this function is sensible to use 
when you are trying to get to generalize to the “bigger picture” i.e. 
image recognition. 

 

2) RELU – regularized linear unit works well for economies which 
have a positive trend to their yields. This was a small number. 

 

3) Tanh – hyperbolic tangent, most sensitive to small changes. This 
made the function optimal for picking up the small changes in betas 
that sigmoid function "smoothed over". 

Optimisers 
Most of the problems have a complex space of solutions. Indeed, the more unknowns added 

the more complex the optimisation of problems of weights and biases becomes. Below is an overview 
of more frequently used optimisers with some of their features. 

1) RMS Prop– optimiser that works exceptionally well on Recurrent Neural Nets (as per our 
modelling starting point) and the technique behind the optimiser is smoothing out variations 
in convergence by dividing them by average over number of immediately previous periods.10  

                                                             
6 https://keras.io/layers/core/#dense 
7 https://keras.io/layers/convolutional/#conv1d 
8 https://keras.io/layers/local/#locallyconnected1d 
9 https://keras.io/optimizers/#parameters-common-to-all-keras-optimizers 
10 www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf 
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2) Adadelta11– adaptive learning rate method - the optimiser speeds up or slows down the 
gradient descent depending on first order information emerging from computation. 
 

3) SGD – stochastic gradient descent, has fewer specific designs than the two above, but 
essentially provides ability to fit the optimisation to any problem, as the underlying approach 
is supremely simple: the weights of the network are adjusted in accordance with the error rate 
relative to the targets. That intuition although computationally intensive allows confidence in 
convergence of solution to the problem over time. 

  

                                                             
11 https://arxiv.org/abs/1212.5701 
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Results 
Based on the following model we were able to obtain the following results for these economies: 

Economy 
DNS sum abs 

validation error 
NN sum abs 

validation error 
Sample plot 

US 4.58341216 4.39226404 

 

UK 4.47859626 4.06658903 

 

DE 7.10978443 5.58480586 

 

JP 1.41906627 0.92467229 
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SG 3.49509066 2.79304426 

 

AU 
6.26584138 

 
4.57419012 

 

 

HK 0.77290543 0.66875669 
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Additional analysis 
We also had a look at possibilities of using US data to infer HK curves and AU curves, since 

the original data provided short history to work with. 

These networks require further amendments to the structure, and hence the performance on 
existing structure is cited below. As it is obvious the information does get lost between the two 
countries, but we are working to investigate a) renormalisation via HK/AU rather than US as is 
currently done b) adding an additional information into the model about the difference between the 
economies 

Economy 
DNS sum abs 

validation 
error 

NN sum abs 
validation 

error 

NN x US sum 
abs val error 

Sample plot 

HK 2.07945826 2.02418896 2.00145044 

 

AU 6.26584138 5.14440047 4.68136195 
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Future work 
This work can be extended to incorporate market indicators, commentary and even central 

bank announcements. 

Residual neural nets and regression analysis can also be a powerful enhancement, as some of 
the errors are trending in their nature across the training or validation or testing periods. 

Below you can see an example of such an occurrence, which chronological results of 
residuals from one of our models. The errors show a consistent trend across time. Hence, corrections 
could be make to further enhance the model accuracy via residual modelling. 

 

 

 

 


